Biochemical purification and crystallographic characterization of the fiber-forming protein pilin from Neisseria gonorrhoeae.

نویسندگان

  • H E Parge
  • S L Bernstein
  • C D Deal
  • D E McRee
  • D Christensen
  • M A Capozza
  • B W Kays
  • T M Fieser
  • D Draper
  • M So
  • E D Getzoff
  • J A Tainer
چکیده

Pilus fibers are long protein filaments on many pathogenic bacteria that participate in attachment to host cells. Although the self-assembling protein pilin is the major structural component of the Neisseria gonorrhoeae pilus fiber, several other proteins co-purified with pilin through the repeated solubilization-reassociation steps of the biochemical purification. Pilin solubilized in the nondenaturing detergent n-octyl-beta-D-glucopyranoside remained an aggregate of about 100 kDa at pH 9.5, but was reduced to a 40-kDa dimer at pH 10.5, suggesting that assembly involves electrostatic interactions of lysine, tyrosine, or other side chains with high pKa values. Pilin dimers and aggregates of higher molecular mass were partially stable even in the presence of sodium dodecyl sulfate and beta-mercaptoethanol. Removal of pilus-associated proteins and stabilization of pilin multimers permitted the reproducible crystallization of pilin. Three-dimensional needle- and plate-shaped crystals of purified N. gonorrhoeae pilin (strain MS11 variant C30) grew from 36 to 40% polyethylene glycol 400, pH 8.0-9.0, in space group C222, with cell dimensions a = 126.4, b = 121.2, c = 26.7 A and Vm = 2.84 A3/dalton for one molecule per asymmetric unit. The best crystals diffracted to 2.4 A resolution using synchrotron radiation, were stable to x-ray damage, and appear suitable for determination of the atomic structure. This approach of stabilizing and crystallizing an intermediate assembly state may be useful for other fiber-forming proteins, which have previously not been successfully crystallized in forms that diffract to atomic resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology.

Understanding the structural biology of type IV pili, fibres responsible for the virulent attachment and motility of numerous bacterial pathogens, requires a detailed understanding of the three-dimensional structure and chemistry of the constituent pilin subunit. X-ray crystallographic refinement of Neisseria gonorrhoeae pilin against diffraction data to 2.6 A resolution, coupled with mass spec...

متن کامل

Purification and Characterization of the RecA Protein from Neisseria gonorrhoeae

The strict human pathogen Neisseria gonorrhoeae is the only causative agent of the sexually transmitted infection gonorrhea. The recA gene from N. gonorrhoeae is essential for DNA repair, natural DNA transformation, and pilin antigenic variation, all processes that are important for the pathogenesis and persistence of N. gonorrhoeae in the human population. To understand the biochemical feature...

متن کامل

The Pilin N-terminal Domain Maintains Neisseria gonorrhoeae Transformation Competence during Pilus Phase Variation

The obligate human pathogen Neisseria gonorrhoeae is the sole aetiologic agent of the sexually transmitted infection, gonorrhea. Required for gonococcal infection, Type IV pili (Tfp) mediate many functions including adherence, twitching motility, defense against neutrophil killing, and natural transformation. Critical for immune escape, the gonococcal Tfp undergoes antigenic variation, a recomb...

متن کامل

Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure

Neisseria gonorrhoeae expresses an O-linked protein glycosylation pathway that targets PilE, the major pilin subunit protein of the Type IV pilus colonization factor. Efforts to define glycan structure and thus the functions of pilin glycosylation (Pgl) components at the molecular level have been hindered by the lack of sensitive methodologies. Here, we utilized a 'top-down' mass spectrometric ...

متن کامل

Transcription of a cis-acting, Noncoding, Small RNA Is Required for Pilin Antigenic Variation in Neisseria gonorrhoeae

The strict human pathogen Neisseria gonorrhoeae can utilize homologous recombination to generate antigenic variability in targets of immune surveillance. To evade the host immune response, N. gonorrhoeae promotes high frequency gene conversion events between many silent pilin copies and the expressed pilin locus (pilE), resulting in the production of variant pilin proteins. Previously, we ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 4  شماره 

صفحات  -

تاریخ انتشار 1990